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Abstract

(�)-Roccellaric acid and variously substituted succinates are obtained through direct asymmetric carbolithiation
of 2-phenylselenofumarate derivatives, followed by reaction with suitable electrophiles. © 2000 Elsevier Science
Ltd. All rights reserved.
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Roccellaric and dihydroprotolichesterinic acids1 and2 are natural substances belonging to the class
of paraconic acids, a kind of compound in which the�-position of the lactone moiety is occupied by a
carboxy group. They exhibit a wide range of bioactivities and their stereoselective synthesis is of great
interest as shown by a growing literature attention.1

In this paper we describe an enantioselective approach both to roccellaric acid and also to chiral
2,3-disubstituted succinates, useful as potential peptidomimetic metalloproteinase inhibitors,2 using the
particular reactivity of 2-phenylselenofumaric diester, as shown in our previous work,3 affords only
conjugate addition products with no detectable traces of 1,2 adducts in the reaction with organolithium
compounds.

We developed an asymmetric carbolithiation protocol in which the presence of cyclohexyl based chiral
auxiliaries4 in the ester moieties of 2-phenylselenofumarate provides an excellent stereocontrol in the
formation of the two new stereogenic centers. (1R,2S)-(�)-trans-2-Phenyl-1-cyclohexanol proved to be
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the auxiliary of choice and the corresponding fumaric diester was prepared according to the sequence
outlined in Scheme 1.

Scheme 1.

Dimethyl acetylenedicarboxylate3 was thus transesterified to the corresponding chiral diester4
via titanium catalyzed methodology;5 then, nucleophilic addition of in situ generated benzeneselenol6

proceeded with good yield and stereoselectivity to afford compound5. Intermediate5 was then tested in
carbolithiation reactions in the presence of 1 equivalent of organolithium reagent in dichloromethane at
�78°C7 (Scheme 2).

Scheme 2.

Results show that with methyllithium the reaction proceeds with high yield and excellent dia-
stereoselectivity (>15:1)8 to give succinate6. The absolute configuration of C-2 in compound6 was
determined by chemical correlation with the commercially available 2-(R)-methyl succinic acid. The
relative stereochemistry of C-2 and C-3 was deduced after stereospecific selenoxidesyn-elimination
from the compound6 that afforded only the 2-methyl maleate derivative, in agreement with an (S) C-3
configuration.

To explore the possibility of preparing trisubstituted succinates, we studied the reactivity of the ester
enolate resulting from methyllithium addition towards electrophiles (Scheme 3).9 Interestingly, our data
shows that ester enolate reactivity is clearly enhanced by using a commercially available cumene:THF
(9:1) methyllithium 1 M solution (Table 1, entries 7 and 8) instead of the usual 1.5 M ethereal solution
utilized in our previous reactions (Table 1, entries 1–6).

Scheme 3.



563

Table 1
Dialkylation of fumarate5

The stereoselectivities are excellent even when low yields are obtained. The stereochemistry of the
dialkylation products7a–c has not yet been determined.

Having established the feasibility of a ‘one pot’ procedure in which an electrophile was used to quench
the carbolithiation product, we turned our attention to the synthesis of paraconic acids through reaction
of our enolate with a suitable aldehyde, such as myristyl aldehyde. The success of this transformation
would have led us to the corresponding 4-carboxy-butano-4-lactones, potential precursors of the naturally
occurring roccellaric and dihydroprotolichesterinic acids1 and2.10

Again, the use of methyllithium in cumene:THF (9:1) greatly enhanced the reactivity of the ester
enolate (Table 2, entry 3) allowing the formation of8a in good yield and diastereoselectivity;11 no
formation of 8a was detected using the ethereal methyllithium solution (Scheme 4, Table 2, entries
1–2). Aromatic aldehydes were unreactive under these conditions (Scheme 4, Table 2, entries 4 and
5). Moreover, recovery of the chiral auxiliary with unaffected optical activity was possible through
chromatographic separation.

Table 2
Synthesis of lactone8

Compound8a was then treated under the usual radical hydrogenolysis conditions (Bu3SnH, AIBN),
but no reaction was observed; however, using another deselenylation protocol based upon the use of in
situ generated nickel boride12 we were able to obtain, in quantitative yield, a diastereomeric mixture of
compounds9a and9b in a 3.5:1 ratio (Scheme 5). The possibility of quantitatively transforming9b into
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Scheme 4.

9a via subsequent epimerization13 and separation overcomes the drawback of the limited selectivity of
this reaction.

Scheme 5.

Finally, 9acan be easily transformed into (�)-roccellaric acid, the enantiomer of the natural substance
1, [mp 107°C, [�]D=�25.4° (c=1.93), lit.1b mp 108°C, [�]D=�26° (c=1.93)] by treatment with basic
methanol, that allows also the complete recovery of the chiral auxiliary (Scheme 5).

In conclusion, we describe a novel stereoselective protocol to achieve direct asymmetric carbolithiation
of 2-phenylseleno fumarate derivatives; the procedure provides a new entry to chiral tri- and disubstituted
succinates and proved to be a valuable and straightforward synthetic tool. In fact, (�)-roccellaric acid1
was easily obtained in three steps from the chiral synthon5 (overall yield 42%); the sequence allows the
recovery of the chiral auxiliary that can be recycled. Studies are in progress to broaden the versatility of
the procedure, in order to develop a general method to obtain a wide range of differently 2,3-disubstituted
succinates in optically pure form.
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